3x^2+3=7x+5

Simple and best practice solution for 3x^2+3=7x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+3=7x+5 equation:


Simplifying
3x2 + 3 = 7x + 5

Reorder the terms:
3 + 3x2 = 7x + 5

Reorder the terms:
3 + 3x2 = 5 + 7x

Solving
3 + 3x2 = 5 + 7x

Solving for variable 'x'.

Reorder the terms:
3 + -5 + -7x + 3x2 = 5 + 7x + -5 + -7x

Combine like terms: 3 + -5 = -2
-2 + -7x + 3x2 = 5 + 7x + -5 + -7x

Reorder the terms:
-2 + -7x + 3x2 = 5 + -5 + 7x + -7x

Combine like terms: 5 + -5 = 0
-2 + -7x + 3x2 = 0 + 7x + -7x
-2 + -7x + 3x2 = 7x + -7x

Combine like terms: 7x + -7x = 0
-2 + -7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-0.6666666667 + -2.333333333x + x2 = 0

Move the constant term to the right:

Add '0.6666666667' to each side of the equation.
-0.6666666667 + -2.333333333x + 0.6666666667 + x2 = 0 + 0.6666666667

Reorder the terms:
-0.6666666667 + 0.6666666667 + -2.333333333x + x2 = 0 + 0.6666666667

Combine like terms: -0.6666666667 + 0.6666666667 = 0.0000000000
0.0000000000 + -2.333333333x + x2 = 0 + 0.6666666667
-2.333333333x + x2 = 0 + 0.6666666667

Combine like terms: 0 + 0.6666666667 = 0.6666666667
-2.333333333x + x2 = 0.6666666667

The x term is -2.333333333x.  Take half its coefficient (-1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
-2.333333333x + 1.361111112 + x2 = 0.6666666667 + 1.361111112

Reorder the terms:
1.361111112 + -2.333333333x + x2 = 0.6666666667 + 1.361111112

Combine like terms: 0.6666666667 + 1.361111112 = 2.0277777787
1.361111112 + -2.333333333x + x2 = 2.0277777787

Factor a perfect square on the left side:
(x + -1.166666667)(x + -1.166666667) = 2.0277777787

Calculate the square root of the right side: 1.424000625

Break this problem into two subproblems by setting 
(x + -1.166666667) equal to 1.424000625 and -1.424000625.

Subproblem 1

x + -1.166666667 = 1.424000625 Simplifying x + -1.166666667 = 1.424000625 Reorder the terms: -1.166666667 + x = 1.424000625 Solving -1.166666667 + x = 1.424000625 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = 1.424000625 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = 1.424000625 + 1.166666667 x = 1.424000625 + 1.166666667 Combine like terms: 1.424000625 + 1.166666667 = 2.590667292 x = 2.590667292 Simplifying x = 2.590667292

Subproblem 2

x + -1.166666667 = -1.424000625 Simplifying x + -1.166666667 = -1.424000625 Reorder the terms: -1.166666667 + x = -1.424000625 Solving -1.166666667 + x = -1.424000625 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + x = -1.424000625 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + x = -1.424000625 + 1.166666667 x = -1.424000625 + 1.166666667 Combine like terms: -1.424000625 + 1.166666667 = -0.257333958 x = -0.257333958 Simplifying x = -0.257333958

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.590667292, -0.257333958}

See similar equations:

| 175x=x^2+2500 | | 150x-x^2=500+90x | | j+(-16)=2 | | (3x-5)=(5-2x) | | (3x+4)+(5y-1)i=10-16i | | 12-6x=96 | | X+272=311 | | 3a+8-5a=2 | | 6x=2x+92 | | 8y=7x | | 9+4=3a+4a | | 8x-(3x+6)=24 | | 6=5a+2-4a | | 6-4x=7x-9x-4 | | x*x*x-6=24 | | 7x-9x= | | 3a+2+2a=7 | | x^2-175x+2500=0 | | 4[2-5(w+3)]+2(w+1)=2[(5w+1)-(w+3)] | | x^2-90x+2000=0 | | 4x+83=6x+29 | | 7x-21=0 | | 2x+2(2x+2)=40 | | 7-8x=27-22x | | -y+71=291 | | -7+71=291 | | 3x-5=8-2x | | 4x-4x-1=48 | | 5n-8=11n+5 | | 3(x+3)=16 | | -6x-7x=91 | | 5x-20=x+40 |

Equations solver categories